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Communication among animals should use signals that are most efficient in their particular habitat. Here, we report

data from 3 populations of Indo-Pacific bottlenose dolphins (Tursiops aduncus) in Japan that produce whistles

transmitted efficiently through environmental ambient noise. We compared the characteristics of the ambient noise

in the dolphins’ habitats and the whistles produced. In habitats with less ambient noise, dolphins produced whistles

at varying frequencies with greater modulations; when ambient noise was greater, dolphins produced whistles of

lower frequencies with fewer frequency modulations. Examination of our results suggests that communication

signals are adaptive and are selected to avoid the masking of signals and the attenuation of higher-frequency

signals. Thus, ambient noise may drive the variation in whistles of Indo-Pacific bottlenose dolphin populations.
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Many studies of acoustic communication have revealed that

acoustic signals of animals, especially the frequency and tem-

poral structure of signals, change in response to the acoustic

environment, to ensure that acoustic information is reliably

transmitted (Morton 1975; Wiley and Richards 1978).

Characteristics of acoustic signals are affected by the acoustic

environments among habitats (Sugiura et al. 1999), and

geographical variation in animal acoustic signals can result

from differences in acoustic environments (Morton 1975).

Morton (1975) reported that the physical structures used by

tropical birds to produce sound result from selection pressures

imposed by the acoustic environments of forest, edge, and

grassland habitats. In addition, Ryan and Brenowitz (1985)

suggested that ambient noise affects bird songs. Differences

among bird songs from different acoustic environments make

the songs geographically distinct. Japanese macaques (Macaca
fuscata) produce calls at efficient frequencies for their

particular habitats in that ambient noise and transmission loss

differences are related to geographical variation in their calls

(Sugiura et al. 1999). Pygmy marmosets (Cebuella pygmaea)

also use calls most suited to the characteristics of their acoustic

environment (de la Torre and Snowdon 2002). Compared with

what is known about how calls are adapted to environmental

constraints among terrestrial animals, little is known about how

environmental factors influence animal communication chan-

nels for aquatic animals (Au 1990).

Physical characteristics of water and air differ considerably.

Sound travels faster and for much greater distances in water

than in air. Many aquatic animals, including crustaceans, fish,

and marine mammals, use acoustic signals to communicate

(Tyack 1998). However, ambient noise, especially in the

shallow sea (,60 m deep) at latitudes less than 408, is

extremely high. Among the many sources of ambient noise,

such as wind, wave, surf, human activity, and other organisms,

a major source is biological noise from other animals, such as

snapping shrimp (Au and Banks 1998; Knudsen et al. 1948).

Noisy environments induce marine animals, including ceta-

ceans, to produce sounds that transmit efficiently in their

habitats. For instance, a beluga whale (Delphinapterus leucas)

shifted its biosonar signals to higher frequencies and intensities

after it was experimentally moved to a noisier environment

(Au et al. 1985). Empirical studies have suggested that the

bottlenose dolphin (Tursiops truncatus) and the false killer

whale (Pseudorca crassidens) also adapt their biosonar signals

to their environments (Au 1993; Au et al. 1974). If acoustic

profiles differ among habitats, the restrictions of these profiles

may cause geographical variation in the acoustic signals of

animals.

Indo-Pacific bottlenose dolphins are small-toothed whales

that reside year-round in coastal waters, commonly forming

large aggregations. They disperse across temperate oceans

including those around South Africa, Australia, India, China,
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and Japan (Kasuya et al. 1997; Ross and Cockcroft 1990).

Recent morphological and molecular studies have revealed

that T. aduncus is distinct from T. truncatus (LeDuc et al. 1999;

Ross and Cockcroft 1990; Wang et al. 1999, 2000a, 2000b).

Bottlenose dolphins produce 2 types of sound for communi-

cation: pulsed calls and tonal calls (Tyack and Clark 2000). A

whistle is a tonal call with a narrow band and a frequency-

modulated pure tone. Whistles are thought to function as group

cohesion or contact calls (Janik and Slater 1998). Each indi-

vidual produces various types of whistles. Wang et al. (1995a)

reported geographical variation in whistles of bottlenose

dolphins. However, in light of recent discoveries related to the

taxonomy of this genus, the authors may have actually studied

2 species together, which would confound their results (Wang

et al. 1995a). In a preliminary study before this one, we com-

pared whistles of the 3 Indo-Pacific bottlenose dolphin popu-

lations described in this paper by measuring 10 variables (Wang

et al. 1995a) including beginning frequency, end frequency,

minimum frequency, maximum frequency, duration, number of

inflections, beginning sweep, end sweep, harmonics, and break

of contour (Morisaka et al., in press). Examination of our data

suggested geographical variation among populations. We hy-

pothesized that the geographical variation may result from

variations in acoustic environments in their habitats. In the

current study, we examined acoustic characteristics of 3 Indo-

Pacific bottlenose dolphin (T. aduncus) populations in Japan and

compared these characteristics with those of environmental am-

bient noises in their habitats in order to investigate effects of

ambient sound on the whistle structure of bottlenose dolphins.

MATERIALS AND METHODS

All of our procedures were conducted according to guidelines of the

American Society of Mammalogists (Animal Care and Use Committee

1998). Data were collected in coastal areas off the Ogasawara Islands,

Tokyo (1428119E, 268059N); Mikura Island, Tokyo (1398369E,

338529N); and the Amakusa-Shimoshima Islands, Western Kyushu

(1308079E, 328339N), Japan (Fig. 1). Around the Ogasawara Islands,

about 200–300 dolphins may reside near the Chichi-jima and Haha-

jima islands (Shinohara 1998). Around Mikura Island, 138 resident

dolphins have been identified (Kogi et al. 2004), and around the

Amakusa–Shimoshima Islands, 218 dolphins are permanent residents

(Shirakihara et al. 2002). The dolphins were confirmed to be Indo-

Pacific bottlenose dolphins (T. aduncus) by genetic analysis and

observation of external appearance (Kakuda et al. 2002; Mori et al.

1996; Shinohara 1998; Shirakihara et al. 2003).

Sound recordings of ambient noise.—Adrift aboard recording

vessels, we recorded ambient noise when other vessels were not

within 1 km. The recordings were conducted at 15- to 30-m water depth

during calm seas (Beaufort wind force ,4) with no rain. We recorded

ambient noise in the dolphins’ ranges with a calibrated hydrophone

(Oki ST1001 or ST1020, Tokyo, Japan) connected to a preamplifier

(Oki SW1007 or SW1020, respectively) and a digital audiotape

recorder (Sony TCD-D8, Tokyo, Japan). The frequency response was

set between 1 and 24 kHz. At each area, 19–26 recording sessions of

ambient noise with sampling every 3 min were conducted with

a hydrophone located 10 m below the surface. In the Ogasawara

Islands, there were 26 recording sessions at 26 locations, made on 28

and 30 August 1999. Around Mikura Island, there were 19 recording

sessions at 19 recording sessions at 13 locations, made on 10–11

September 2000 and on 8 and 10 July 2003. In the Amakusa–

Shimoshima Islands, there were 23 recording sessions at 16 locations,

made on 2 and 7 September 2002 and on 20–21 October 2003. Water

temperatures were recorded simultaneously with acoustic signals.

Whistles.—Frequency responses varied as whistles were recorded

opportunistically from dolphins throughout the study area, but all

recordings extended beyond 20 kHz. In Ogasawara Islands, recordings

were made on June 1998 with Hi-8 Video (Kyocera KX-H3, Kyoto,

Japan). Around Mikura Island, recordings were made in June–July

1996 and in June 1997 with Hi-8 Video (Sony CCD-TR2000, Tokyo,

Japan). At Ogasawara Islands in August 1999 and Mikura Island in

September–October 2000, we recorded sounds and behaviors by using

an underwater video system modified from Dudzinski (1999; Sony

DCR-TRV900, Tokyo, Japan). In Amakusa–Shimoshima Islands,

recordings were made in September 1998 with a calibrated hydro-

phone (Oki ST1020, Tokyo, Japan) connected to a preamplifier (Oki

SW1020) and a digital audiotape recorder (Sony TCD-D8, Tokyo,

Japan) and in September 2002 with a calibrated hydrophone (Oki

ST1001) connected to a preamplifier (Oki SW1007) and a digital

audiotape recorder (Sony TCD-D8).

Sound analysis.—For all sound analyses, Avisoft-SASLab Pro ver-

sion 4.0 software (Specht 2001) was used. Traditionally, characteristics

of dolphin whistles have been analyzed by measuring variables from

each whistle (beginning frequency, end frequency, minimum frequency,

maximum frequency, duration, and number of inflections—Rendell

et al. 1999; Steiner 1981; Wang et al. 1995a), but we calculated the

adopted frequency and coefficient of frequency modulation for each

whistle in this study instead of those traditional variables.

FIG. 1.—Map of the Ogasawara Islands (OGA), Mikura Island

(MIK), and Amakusa–Shimoshima Islands (AMA), Japan, where

Tursiops aduncus calls were recorded.
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Ambient noise.—We set the frequency resolution at 375 Hz and the

time resolution at 2.67 ms, with a humming window and a 1- to 22-

kHz band-pass filter. From the 3-min samplings taken at each location,

we randomly selected three 4-s samples of ambient noise at intervals

longer than 25 s. We averaged 3 amplitude spectra from each location

and used the average in analyses.

Whistles.—We set the frequency resolution at 93 Hz and the time

resolution at 5.3 ms, with a humming window and a 1-kHz high-pass

filter in the Avisoft-SASLab Pro software. We selected whistles with

good signal-to-noise ratios. For each whistle, the adopted frequency

and coefficient of frequency modulation were calculated in order to

clarify the effects of frequency range usage and frequency modulations

on the whistles.

Adopted frequencies are used to measure the frequency range

actually used during a whistle. Range between minimum frequency and

maximum frequency of a whistle also can indicate frequency range

of the whistle, but it cannot evaluate an actual frequency distribution of

a whistle within the range. In order to evaluate the frequency distri-

bution of a whistle, we divided the duration of each whistle into 19

equal time intervals and calculated 20 frequency points, or adopted

frequencies, of the whistle, after McCowan (1995). Adopted frequen-

cies were regarded as the representative of frequencies of a whistle. We

also calculated frequency distribution of these points for each popu-

lation (Fig. 2), which represented actual frequency range of whistles

from each population.

McCowan and Reiss (1995) used the coefficient of frequency mod-

ulation (COFM) to measure change in the complexity of whistle

contour during development of infant bottlenose dolphins. To measure

the frequency modulation of each whistle, we used the 20 frequency

points described above in the following equation:

COFM ¼
X

ðn¼1;19Þ
jYnþ1 � Ynj=10; 000; ð1Þ

where Yn is the frequency at the nth frequency point (McCowan and

Reiss 1995). Coefficient of frequency modulation represents the

amount and magnitude of frequency modulation or change across each

whistle. If a whistle has greater frequency modulation, the value of the

coefficient of frequency modulation increases, and vice versa.

Statistical analyses.—The Kruskal–Wallis nonparametric test, run

in StatView software (SAS Institute Inc. 1998), was used to compare

adopted frequencies among the 3 populations. Coefficient of frequency

modulation data were adjusted to a nearly normal distribution by the

Box–Cox transformation (Sokal and Rohlf 1995) and were then com-

pared among the 3 populations by analysis of variance (ANOVA). We

then compared adopted frequencies and coefficients of frequency

modulation between all pairs of the 3 populations by using the Tukey–

Kramer honestly significant difference test run in JMP software (SAS

Institute Inc. 2002). The differences in whistle duration among popu-

lations were tested by using ANOVA after Box–Cox transformation.

We compared coefficient of frequency modulation with whistle dura-

tion and population as factors by analysis of covariance (ANCOVA) to

evaluate the explanatory power of duration, population, and their

interaction (duration versus population).

RESULTS

Ambient noise.—Ambient noise was greatest at the Ama-

kusa–Shimoshima Islands and lowest at Mikura Island (Fig. 3).

Noise levels at Mikura Island and the Ogasawara Islands were

similar except that Mikura Island seemed to experience lower

frequencies. Ambient noise levels at each location were rela-

tively flat and about 5–18 kHz. Noise levels at the Ogasawara

Islands and Mikura Island at times dropped slightly below 5 kHz,

but levels at the Amakusa–Shimoshima Islands remained high.

Whistles.—We analyzed 239 whistles from the Ogasawara

Islands (1998, n¼ 99; 1999, n¼ 140), 255 whistles from Mikura

Island (1996, n ¼ 54; 1997, n ¼ 100; 2000, n ¼ 101), and 208

whistles from the Amakusa–Shimoshima Islands (1998, n ¼
101; 2002, n ¼ 107).

Adopted frequencies.—Adopted frequencies differed signif-

icantly among the 3 populations (Kruskal–Wallis, H ¼ 941.6,

P , 0.0001) and between all population pairs (Tukey–Kramer

honestly significant difference, a ¼ 0.05; Fig. 4).

Coefficient of frequency modulation.—Coefficients of fre-

quency modulation were significantly lower at the Amakusa–

Shimoshima Islands than at the other islands (ANOVA after

Box–Cox transformation, F ¼ 51.54, P , 0.0001; Tukey–

FIG. 2.—A schematic diagram of adopted frequencies of vocal-

izations. A whistle (upper right) is divided into 19 equal time intervals

and 20 calculated frequency points, which are the representative

frequencies of the whistle. We count number of frequency points at

each frequency and plot on a figure (lower left). We put these data

from each population together and regard them as the distribution of

adopted frequencies of each population, which represented actual

frequency range of whistles from each population.

FIG. 3.—Ambient noise level at the Ogasawara Islands (OGA),

Mikura Island (MIK), and Amakusa–Shimoshima Islands (AMA),

Japan, from 1 to 22 kHz (with noise spectrum level decibels re 1 lPa2/

Hz).
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Kramer honestly significant difference, a ¼ 0.05; Table 1;

Fig. 5). Whistle durations did not differ significantly among

populations (ANOVA after Box–Cox transformation, F ¼
2.82, P ¼ 0.06). Coefficients of frequency modulation

correlated with duration, population, and their interaction term

(ANCOVA; F ¼ 717.12, F ¼ 38.81, and F ¼ 26.43,

respectively; all P , 0.0001). Coefficients of frequency

modulation did not differ between the Ogasawara Islands and

Mikura Island.

DISCUSSION

We found between-site differences in ambient noise levels

among habitats. The Amakusa–Shimoshima Islands had higher

ambient noise levels than did the other 2 areas. These islands

are near a larger island, Kyushu, which has a sizeable estuary

favored by cetaceans. Mikura Island and the Ogasawara Islands

are isolated oceanic islands. Furthermore, boat noise was

greater around the Amakusa–Shimoshima Islands, where

dolphin-watching boats, fishing boats, and commuter ferries

operate continuously.

The distributions of adopted frequencies also differed among

the 3 populations, which indicated that frequency ranges or dis-

tributions of whistles differed among 3 populations. Dolphins

in the Amakusa–Shimoshima Islands group produced whistles

of lower frequencies, and dolphins in the Mikura Island group

produced whistles of higher frequencies, relative to dolphins

at the other sites. The distributions of adopted frequencies also

differed among the 3 populations. Whistles among dolphins

from the Ogasawara Islands had a broader frequency range

(coefficient of variation [CV ]¼ 45.5) and lower frequency peak

than did those among Mikura Island dolphins, although the 2

dolphin groups had equal average adopted frequencies. Whistles

at Mikura Island had the narrowest frequency range of all (CV¼
32.8). The acoustic niche hypothesis, which states that ceta-

ceans shift their communication sounds to be below or above

ambient noise, was developed from studies of the gray whale

(Eschrichtius robustus) and the bottlenose dolphin (Dahlheim et

al. 1984; Wang et al. 1995a). Other animals have been suggested

to use acoustic signals designed to bypass ambient noise,

including tropical birds (Ryan and Brenowitz 1985) and the

pygmy marmoset (de la Torre and Snowdon 2002).

The data from the present study do not support the acoustic

niche hypothesis because they showed no relation between

whistles and ambient noise. We suggest that dolphins may not

be sensitive to spectra of ambient noise but rather to the entire

suite of ambient noise in their habitats. The ambient noises in

our study areas have relatively flat ranges, from 5 to 18 kHz,

which is the range covered by whistles.

FIG. 4.—Adopted frequency distributions of whistles produced by 3

populations of bottlenose dolphins from the Ogasawara Islands

(OGA), Mikura Island (MIK), and Amakusa–Shimoshima Islands

(AMA), Japan. The y-axis represents percentage of frequency points

from each population at the same frequency, or the number of fre-

quency points divided by the sum of frequency points of each popu-

lation and multiplied by 100.

TABLE 1.—Medians, 1st and 3rd quartiles, and averages of adopted

frequencies, duration averages, and coefficients of frequency

modulation averages of whistles from 3 populations of bottlenose

dolphins from Japanese islands. Regression equations and R2 values

from Fig. 5 also are shown. CV, coefficient of variation.

Ogasawara

Islands

Mikura

Island

Amakusa�Shimoshima

Islands

Adopted frequencies (kHz)

1st quartile 5.34 6.70 4.97

Median 7.69 8.72 6.09

3rd quartile 11.4 10.8 8.63

Mean 8.68 8.89 7.08

CV 45.5 32.8 43.6

Duration (s)

Mean 0.43 0.44 0.35

SD 0.34 0.38 0.27

Coefficient of frequency modulation

Mean 1.36 1.16 0.51

SD 1.64 1.22 0.58

FIG. 5.—Relation between duration and coefficient of frequency

modulation (COFM) of whistles recorded from 3 populations of

bottlenose dolphins from the Ogasawara Islands (OGA), Mikura

Island (MIK), and Amakusa–Shimoshima Islands (AMA). Regression

lines are shown. Regression equations and R2 values are as follows.

OGA: COFMOGA ¼ �0.06 þ 2.99 � duration, R2 ¼ 0.54; MIK:

COFMMIK ¼ �0.06 þ 2.80� duration, R2 ¼ 0.75; AMA: COFMAMA ¼
0.03 þ 1.35 � duration, R2 ¼ 0.38.
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Adopted frequencies are thus a more appropriate measurement

of the frequency effect of whistles than are traditional measure-

ments of start frequency, end frequency, minimum frequency,

and maximum frequency.

Consistent with other studies (Steiner 1981; Wang et al.

1995a), whistle durations did not differ among the 3 populations.

Wang et al. (1995a) suggested that whistle durations have

greater intrapopulation than interpopulation differences and

that this trait might carry additional analogical information

or might be used to distinguish individual dolphins.

The coefficients of frequency modulation were lowest at the

Amakusa–Shimoshima Islands. The coefficients at Mikura

Island and the Ogasawara Islands did not differ. The coefficient

of frequency modulation measure has been used only by

McCowan and Reiss (1995) in a study of whistle development

in bottlenose dolphin infants. We found it to be a useful value

for measuring frequency modulations of captive and wild

dolphin whistles.

The greatest ambient noise was found at the Amakusa–

Shimoshima Islands, where dolphins produced whistles of the

lowest frequency and with the lowest coefficient of frequency

modulation. Mikura Island and the Ogasawara Islands had low

ambient noise levels, and dolphins there produced whistles of

high frequency and greater frequency modulation. These results

suggest that, at the Amakusa–Shimoshima Islands, communi-

cation signals are selected to avoid noise that might mask them;

higher-frequency sounds cannot transmit over long distances,

and frequency modulations are easily masked by other noise.

Thus geographical variation in the whistles of Indo-Pacific

bottlenose dolphin populations may originate from geographical

differences in the ambient noises of their habitats.

We recorded ambient noise only during the day. However,

Albers (1965) reported that snapping shrimp noise varies only

slightly during the day, and is 2–5 dB higher at night. The

ambient noise level between Amakusa–Shimoshima Islands and

the other sites had clear difference even if snapping shrimp

noise became 5 dB higher at night at only Amakusa–

Shimoshima Islands. However, we cannot dismiss the possi-

bility that whistles also may be affected by factors other than

ambient noise (such as individual movement among habitats).

Future studies should address genetic divergence at a scale that

will fully describe the geographical variation of whistles.

This study also indicates that Indo-Pacific bottlenose dolphins

produce whistles that easily transmit to the receiver in the pres-

ence of various environmental and ambient noises. Future study

of dolphin whistles should consider that such noise probably

exerts some selective force, at least with regard to behavior (e.g.,

Janik 2000), social patterns (e.g., McCowan et al. 1998), phys-

iological responses (e.g., Wang et al. 1995b), and development

(McCowan and Reiss 1995).
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